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Abstract

In terms of the principal components of stress tensor and a scalar response function, two kinds of basis-free rep-

resentation for the stress rate are obtained, which only include the time rate of the strain, tensor functions and in-

variants of the strain tensor. The expressions for the stress rate valid in the cases that the eigenvalues of the strain are

distinct, doubly coalescent, and triply coalescent, respectively.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In continuum mechanics, tensorial physical quantities admit either principal axis representation or basis-

free representation. These two types of representation are completely equivalent. The principal axis rep-

resentation, expressing a tensor quantity in the frame of principal direction of a concerned tensor, follows

from Hill’s principal axis method (Hill, 1978, Silhav�y, 1997). The basis-free representation relies on the
principal invariants and powers of arguments (Rivlin and Ericksen, 1955, Truesdell and Noll, 1965).

The principal axis representation gives better control over the differentiability, invertibility and con-

vexity, and many results in continuum mechanics can be advantageously obtained by this method, such as,

spin tensor, time rate of generalized strain and conjugate stress. However, further abstract or numerical

manipulations with the principal method are quite expensive. They require that not only the eigenvalues but

also the eigenvectors be determined.

In order to avoid calculation of the eigenvalues and corresponding eigenvectors, once a principal axis

formula is proposed, there arises naturally the problem of finding its basis-free representation. It has at-
tracted the attention of many researchers in past decades, such as, the expressions for spin tensor (see, e.g.,
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Mehrabadi and Nemat-Nasser, 1987, Wang and Duan, 1991, Macmillan, 1992, Dui, 1999), time rate of

strain (see, e.g., Wang and Duan, 1991, Man and Guo, 1993, Xiao, 1995, Xiao et al., 1998, Dui et al., 1999),

and conjugate stress (see, e.g., Hoger, 1987, Guo and Man, 1992, Xiao, 1995, Dui et al., 2000). However,

these methods are applicable for special cases. The basis-free representation of general isotropic functions is
a more difficult problem.

For finite elastic deformation, the constitutive equations can be provided by a conjugate pair of stress

and strain introduced by Hill (1968). Let E be the Green strain tensor, and let feig and fNig be eigenvalues

(principal stretches) and subordinate ortho-normal eigenvectors (principal directions) of E, respectively. If

we confine our attention to isotropic materials, the constitutive equations may be described by the Green

strain and its conjugate stress T, the second Piola–Kirchhoff stress, as
T ¼
X
i

tiðe1; e2; e3ÞNi �Ni ð1Þ
where ti are the principal values of T.
Once the constitutive relation is proposed, based on the principal axes method, a more compact formula

for the stress rate was derived with the components of the strain and its rate in the principal frame fNig
(Hill, 1968, Ogden, 1974). Evidently the component expression of the stress rate, as given in the principal

frame, is valid only in that frame.

Basis-free representation of the stress rate has an important role to play in the description of material

behavior. The time rates of conjugate stress and its corresponding strain are connected by a fourth-order

tensor, the elasticity tensor. Accordingly, if the basis-free expression for the stress rate is given, the basis-

free expression for the elasticity tensor may be obtained immediately.
Since the stress rate is an isotropic tensor function of the strain tensor and strain rate with linear in the

strain rate for the isotropic materials, it is possible in view of the representation theorem (Rivlin and Er-

icksen, 1955) for isotropic functions to find a basis-free expression for the time rate of the stress with the

strain tensor, strain rate and their invariants.

The explicit expression of the stress rate for the Green elastic material is well studied (see, e.g. Marsden

and Hughes, 1993). However, the problem of finding the basis-free expression for general isotropic

materials becomes more difficult than the above ones. As a result, most early methods are not valid again

for this problem. Thus far, a basis-free expression for the general stress rate has not been available.
One objective of this paper is to obtain explicit basis-free representations for the stress rate, which only

include the time rate of the strain, functions of the strain tensor and their invariants. The paper is organized

as follows: in Section 2, some preliminary results, which will be used in the remainder of the paper, are

supplied. In Section 3, in order to avoid the difficulty in dealing three symmetric functions, a single scalar

response function f to express the principal stress is introduced. The expressions for the stress tensor are

given by the function f in three different eigenvalue cases. In Section 4, two kinds of basis-free represen-

tations for the stress tensor are given. First, based on the principal components of the stress tensor, the

stress rate is expressed as the form of isotropic tensor function representation suggested by Rivlin and
Ericksen (1955), and 12 coefficients are determined. Then, the basis-free representations for the stress rate

are derived by the scalar function f in three different eigenvalue cases. It can be seen that this expression is

more concise than the first one. Finally, an application of our basis-free formulae for the stress rate is

illustrated by two examples in Section 5.
2. Some preliminary results

Since the deformation gradient tensor F has the positive determinant, it admits unique positive definite
second-order tensors U and V, and proper orthogonal second-order tensor R such that
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F ¼ RU ¼ VR ð2Þ

where U and V, respectively, are called the right and left stretch tensors. The right and left Cauchy–Green

strain tensors, C and B, are related to U, V and F by
C ¼ U2 ¼ FTF; B ¼ V2 ¼ FFT ð3Þ

Let ki be the principal values of U and V corresponding to the principal direction Ni and ni, respectively, so

that
U ¼
X
i

kiNi �Ni; V ¼
X
i

kini � ni; C ¼
X
i

KiNi �Ni ð4Þ
and
R ¼
X
i

ni �Ni; F ¼
X
i

kini �Ni ð5Þ
where Ki ¼ k2
i .

Let the invariants of C be
I1 ¼ trðCÞ ¼ K1 þ K2 þ K3

I2 ¼
1

2
½ðtrðCÞÞ2 	 trðC2Þ
 ¼ K1K2 þ K2K3 þ K1K3

I3 ¼ detðCÞ ¼ K1K2K3

ð6Þ
The rate-type constitutive equation of elastic materials with linear or piecewise linear incremental

loading in the reference configuration can be described by the Green strain
E ¼ 1
2
ðC	 IÞ ð7Þ
and its conjugate stress, the second Piola–Kirchhoff stress tensor T, as
_T ¼ L : _E ð8Þ

where the superposed dot denotes the material time rate. In Eq. (8) the fourth-order tensor is called the

elasticity tensor (or first-order modulus), and may be represented symbolically as
L ¼ ðTÞ;E¼ 2ðTÞ;C ð9Þ

For isotropic elastic materials, the symmetric second Piola–Kirchhoff stress tensor T is expressible as a
function of the Green strain tensor E
T ¼ TðEÞ ð10Þ

and satisfies the identity
TðQEQÞ ¼ QTðEÞQ ð11Þ

for all orthogonal Q.
3. Representation of the second Piola–Kirchhoff stress tensor for isotropic material

First, assume that K1 6¼ K2 6¼ K3 6¼ K1, that is
D	 ¼ ðK2 	 K3ÞðK3 	 K1ÞðK1 	 K2Þ 6¼ 0 ð12Þ

If we define
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Ĉ ¼ ðI21 	 4I2ÞIþ 2I1C	 3C2 ð13Þ

then it can be verified that (Dui, 1999)
D2
	 ¼ detðĈÞ ¼ 18I1I2I3 þ I21 I

2
2 	 4I31 I3 	 4I32 	 27I23 ð14Þ
The conjugate pair ðT;EÞ are coaxial, i.e., the stress T has the same principal axes Ni as E,
T ¼
X
i

tiNi �Ni; E ¼
X
i

eiNi �Ni ð15Þ
where ti and ei are, respectively, the principal stresses and principal strains, and
ei ¼
1

2
ðk2

i 	 1Þ ¼ 1

2
ðKi 	 1Þ ð16Þ
The second Piola–Kirchhoff stress T, as defined in Eq. (10), is an isotropic function of C. Hence, it has

the following representation (Truesdell and Noll, 1965):
T ¼ u0Iþ u1Cþ u2C
2 ð17Þ
where u0, u1 and u2 are functions of the principal invariants of C. In view of Eq. (12), it implies
tiðK1;K2;K3Þ ¼ u0 þ u1Ki þ u2K
2
i i ¼ 1; 2; 3 ð18Þ
It is well known that the tensor function T is differentiable if and only ti are differentiable (Silhav�y, 1997).
By applying the identity
K2
j þ KjKi þ K2

i 	 I1ðKj þ KiÞ þ I2 ¼ 0ði 6¼ jÞ
if Ki, I1 and I2 are given, another two eigenvalues Kj and Kk yield
Kj;KkðKi; I1; I2Þ ¼
1

2
I1

�
	 Ki �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I1Ki 	 3K2

i 	 4I2 þ I21

q �
ð19Þ
Hence it is convenient to introduce the differentiable scalar response function f ðx1; x2; x3Þ such that
f ðKi; I1; I2Þ ¼ t1ðKi;Kj;KkÞ ð20Þ

Similarly, by
K2
jKi þ KiK

2
j 	 I1KjKi þ I3 ¼ 0 ði 6¼ jÞ
we can define the scalar function �f ðy1; y2; y3Þ such that
�f ðKi; I1; I3Þ ¼ t1ðKi;Kj;KkÞ ð21Þ
In the case of D	 6¼ 0, Eq. (18) has a unique solution:
u0 ¼ 1
D	

P
i f ðKi; I1; I2ÞKjKkðKk 	 KjÞ

u1 ¼ 1
D	

P
i f ðKi; I1; I2ÞðK2

j 	 K2
kÞ

u2 ¼ 1
D	

P
i f ðKi; I1; I2ÞðKk 	 KjÞ

9>=>; ð22Þ
Here and henceforth, the summation
P

i is to be carried out for all even permutation ði; j; kÞ of ð1; 2; 3Þ.
Certainly, the scalar coefficients u0, u1 and u2 also can be expressed in terms of
Jn ¼ trðTCnÞ
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With the Cayley–Hamilton theorem, the following recursion formula can be established:
Jn 	 I1Jn	1 þ I2Jn	2 	 I3Jn	3 ¼ 0 ð23Þ

In view of (17), we have
J0 ¼ 3u0 þ I1u1 þ ðI21 	 2I2Þu2

J	1 ¼
I2
I3

u0 þ 3u1 þ I1u2 ð24Þ

J	2 ¼
I22 	 2I1I3

I23
u0 þ

I2
I3

u1 þ 3u2
Rewriting (24) as
M
u0

u1

u2

0@ 1A ¼
J	2

J	1

J0

0@ 1A

where
M ¼

I22 	 2I1I3
I23

I2
I3

3

I2
I3

3 I1

3 I1 I21 	 2I2

0BBBBB@

1CCCCCA

with
M	1 ¼ 1

D2
	

2ðI21 	 3I2ÞI23 ð3I1I3 	 I21 I2 þ 2I22 ÞI3 ðI1I2 	 9I3ÞI3
ð3I1I3 	 I21 I2 þ 2I22 ÞI3 4I1I2I3 	 2I31 I3 þ I21 I

2
1 	 2I32 	 9I23 3I2I3 	 I1I22 þ 2I21 I3

ðI1I2 	 9I3ÞI3 3I2I3 	 I1I22 þ 2I21 I3 2I22 	 6I1I3

0B@
1CA
then we obtain
u0 ¼
I3
D2

	
½2I3ðI21 	 3I2ÞJ	2 þ ð3I1I3 	 I21 I2 þ 2I22 ÞJ	1 þ ðI1I2 	 9I3ÞJ0


u1 ¼
1

D2
	
½I3ð3I1I3 	 I21 I2 þ 2I22 ÞJ	2 þ ð4I1I2I3 	 2I31 I3 þ I21 I

2
1 	 2I32 	 9I23 ÞJ	1 þ ð3I2I3 	 I1I22 þ 2I21 I3ÞJ0


ð25Þ

u2 ¼
1

D2
	
½I3ðI1I2 	 9I3ÞJ	2 þ ð3I2I3 	 I1I22 þ 2I21 I3ÞJ	1 þ ð2I22 	 6I1I3ÞJ0

In the case that C has only two distinct eigenvalues, without loss of generality, by assuming

K1ðtÞ 6¼ K2ðtÞ ¼ K3ðtÞ ¼ K0ðtÞ and using the relations
C ¼ K2Iþ ðK1 	 K2ÞN1 �N1 ð26Þ
and
C2 ¼ ðK1 þ K2ÞC	 K1K2I ð27Þ
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T has the reduced representation
T ¼ �u0Iþ �u1C ð28Þ

which implies
�u0 þ �u1Ki ¼ f ðKi; I1; I2Þ i ¼ 1; 2 ð29Þ

The solution of Eq. (29) is given by
�u0 ¼
K2f ðK1; I1; I2Þ 	 K1f ðK2; I1; I2Þ

K2 	 K1

�u1 ¼
f ðK2; I1; I2Þ 	 f ðK1; I1; I2Þ

K2 	 K1

ð30Þ
Analogous analysis for the distinct case, Eq. (23) may reduce to
J0 ¼ 3�u0 þ I1�u1

J	1 ¼
I2
I3
�u0 þ 3�u1

ð31Þ
so that
�u0 ¼
I3

I1I2 	 9I3
ðI1J	1 	 3J0Þ

�u1 ¼
1

I1I2 	 9I3
ðI2J0 	 3I3J	1Þ

ð32Þ
It is interesting that, by choosing T ¼ C2, the comparison of (27) with (28) gives
K1K2 ¼
I3

I1I2 	 9I3
ð2I21 	 6I2Þ

K1 þ K2 ¼
1

I1I2 	 9I3
ðI21 I2 	 2I22 	 3I1I3Þ

ð33Þ
In the case that three eigenvalues of C coalesce, if assuming K1ðtÞ ¼ K2ðtÞ ¼ K3ðtÞ ¼ KðtÞ and

t1 ¼ t2 ¼ t3 ¼ f̂ðKÞ, that is, the deformation corresponds to a state of pure dilation, then C and T has the

following representation
C ¼ KI ð34Þ

and
T ¼ f̂ ðKÞI ð35Þ

where f̂ ðKÞ ¼ t1ðK;K;KÞ.
4. Basis-free expressions for the time rates of stress tensor

4.1. Case of distinct eigenvalues

If we decompose _T and _E in the principal axes Ni and denote their components by _Tij and _Eij, respec-

tively, then we have
_E ¼
X
i;j

_EijNi �Nj ð36Þ
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and
_T ¼
X
i;j

_TijNi �Nj ð37Þ
respectively, where
_Eij ¼ Ni 
 _ENj; _Tij ¼ Ni 
 _TNj
The time rates are often advantageously obtained by the principal method (Hill, 1978). If

K1 6¼ K2 6¼ K3 6¼ K1, the components of (37) can be expressed in terms of _Eij as (Ogden, 1974)
_Tij ¼

X
k

oti
oKk

_Kk if i ¼ j

2
ti 	 tj

Ki 	 Kj

_Eij if i 6¼ j

8>>><>>>: ð38Þ
However, further abstract or numerical manipulations with the principal method would require not only

the eigenvalues but also the eigenvectors of the stretch tensor to be determined.

Next, we set about representing the stress rate in basis-free form. Substituting (18) and (38) into (37), and

comparing the components of _E in (36), we have
_T ¼
X3
i;j¼1

oti
oKj

_KjNi �Ni 	
X3
i¼1

ðu1 þ 2u2KiÞ _KiNi �Ni þ 2u1
_Eþ 2u2ðC _Eþ _ECÞ ð39Þ
The identities
K3
i 	 I1K

2
i þ I2Ki 	 I3 ¼ 0 ð40Þ
leads to
_Ki ¼ ð3K2
i 	 2I1Ki þ I2Þ	1ðK2

i
_I1 	 Ki

_I2 þ _I3Þ ð41Þ
Therefore
X3
i¼1

X3
j¼1

oti
oKj

_KjNi �Ni ¼
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1K2

j

#
Ni �Ni

)
_I1

	
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1Kj

#
Ni �Ni

)
_I2

þ
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1

#
Ni �Ni

)
_I3 ð42Þ
Since
_I1 ¼ 2tr _E;

_I2 ¼ 2I1 tr _E	 2trC _E

_I3 ¼ 2I2 tr _E	 2I1 trC _Eþ 2trC2 _E

ð43Þ
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thus
X3
i¼1

X3
j¼1

oti
oKj

_KjNi �Ni ¼ 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1ðI2 	 2I1Kj þ K2

j Þ
#
Ni �Ni

)
tr _E

	 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1ðI1 	 KjÞ

#
Ni �Ni

)
trC _E

þ 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"(
	 2I1Kj þ I2Þ	1

#
Ni �Ni

)
trC2 _E ð44Þ
Denote
H1ðCÞ ¼ 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"
	 2I1Kj þ I2Þ	1ðI2 	 2I1Kj þ K2

j Þ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI2 	 2I1Ki þ K2

i Þ
#
Ni �Ni

H2ðCÞ ¼ 	 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"
	 2I1Kj þ I2Þ	1ðI1 	 KjÞ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI1 	 KiÞ

#
Ni �Ni

H3ðCÞ ¼ 2
X3
i¼1

X3
j¼1

oti
oKj

ð3K2
j

"
	 2I1Kj þ I2Þ	1 	 ðu1 þ 2u2KiÞð3K2

i 	 2I1Ki þ I2Þ	1

#
Ni �Ni

ð45Þ
Thus the time rate of T can be written as
_T ¼ H1ðCÞ tr _EþH2ðCÞ trðC _EÞ þH3ðCÞtrðC2 _EÞ þ 2u1
_Eþ 2u2ðC _Eþ _ECÞ ð46Þ
Clearly, the tensor functions Hj ¼ HjðCÞ are isotropic functions of C and have the representations
HjðCÞ ¼ a1jIþ a2jCþ a3jC
2 ð47Þ
Hence the representation (46) could be written in the standard form (Rivlin and Ericksen, 1955)
_T ¼ a1Iþ a2Cþ a3C
2 þ a4

_Eþ a5ðC _Eþ _ECÞ þ a6ðC2 _Eþ _EC2Þ ð48Þ
where
ai ¼ ai1trð _EÞ þ ai2 trðC _EÞ þ ai3 trðC2 _EÞ ði ¼ 1; 2; 3Þ
By (47), it can be determined that the coefficients aijði; j ¼ 1; 2; 3Þ and ak (k ¼ 4, 5, 6) in (48) are as follows:
a4 ¼ 2u1; a5 ¼ 2u2; a6 ¼ 0
and
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a11 ¼
2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI2 	 2I1Kl þ K2

l Þ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI2 	 2I1Ki þ K2

i Þ
#
KjKkðKk 	 KjÞ

a21 ¼
2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI2 	 2I1Kl þ K2

l Þ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI2 	 2I1Kl þ K2

i Þ
#
ðK2

j 	 K2
kÞ

a31 ¼
2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI2 	 2I1Kl þ K2

l Þ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI2 	 2I1Ki þ K2

i Þ
#
ðKk 	 KjÞ

a12 ¼ 	 2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI1 	 KlÞ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI1 	 KiÞ

#
KjKkðKk 	 KjÞ

a22 ¼ 	 2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI1 	 KlÞ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI1 	 KiÞ

#
ðK2

j 	 K2
kÞ

a32 ¼ 	 2

D	

X
i

"X3
l¼1

oti
oKl

ð3K2
l 	 2I1Kl þ I2Þ	1ðI1 	 KlÞ

	 ðu1 þ 2u2KiÞð3K2
i 	 2I1Ki þ I2Þ	1ðI2 	 KiÞ

#
ðKj 	 KkÞ

a13 ¼
2

D	

X
i

X3
l¼1

oti
oKl

ð3K2
l

"
	 2I1Kl þ I2Þ	1 	 ðu1 þ 2u2KiÞð3K2

i 	 2I1Ki þ I2Þ	1

#
KjKkðKk 	 KjÞ

a23 ¼
2

D	

X
i

X3
l¼1

oti
oKl

ð3K2
l

"
	 2I1Kl þ I2Þ	1 	 ðu1 þ 2u2KiÞð3K2

i 	 2I1Ki þ I2Þ	1

#
ðK2

j 	 K2
kÞ

a33 ¼
2

D	

X
i

X3
l¼1

oti
oKl

ð3K2
l

"
	 2I1Kl þ I2Þ	1 	 ðu1 þ 2u2KiÞð3K2

i 	 2I1Ki þ I2Þ	1

#
ðKj 	 KkÞ

ð49Þ
In particular, for the Green elastic material, due to the property aij ¼ aji the expression (48) reduces to
_T ¼ a11I tr _Eþ a12ðI trC _Eþ C tr _EÞ þ a13ðI trC2 _Eþ C2 tr _EÞ þ a22C trC _Eþ a23ðC trC2 _Eþ C2trC _EÞ
þ a33C

2trC2 _Ea4
_Eþ a5ðC _Eþ _ECÞ þ a6ðC2 _Eþ _EC2Þ ð480 Þ
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On the other hand, the representation for the stress rate can be written in the different forms in terms of

the scalar function f .
Denote
Gj ¼
X
i

f;jðKi; I1; I2ÞNi �Ni; Gj ¼
X
i

�f;jðKi; I1; I3ÞNi �Ni ð50Þ
where f;i ¼ of
oxi
ðx1; x2; x3Þ and �f;i ¼ o�f

oyi
ðy1; y2; y3Þ. Obviously, the tensor functions Gj ¼ GjðCÞ and Gj ¼ GjðCÞ

are isotropic functions of C.

Thus, we have
X3
i;j¼1

oti
oKj

_KjNi �Ni ¼ G1ðCÞ
X
i

_Ki Ni �Ni þ trð _CÞðG2ðCÞ þ I1G3ðCÞÞ 	 trðC _CÞG3ðCÞ ð51Þ
or
 X3
i;j¼1

oti
oKj

_KjNi �Ni ¼ G1ðCÞ
X
i

_KiNi �Ni þ trð _CÞG2ðCÞ þ I3 trðC	1 _CÞG3ðCÞ ð52Þ
To substitute (51) and (52) into (39), the time rate of T can be written as
_T ¼ ðG1ðCÞ 	 u1I	 2u2CÞ
X3
i¼1

_KiNi

 
�Ni

!
þ 2trð _EÞðG2ðCÞ þ I1G3ðCÞÞ 	 2trðC _EÞG3ðCÞ

þ 2u1
_Eþ 2u2ðC _Eþ _ECÞ ð53Þ
or
_T ¼ ðG1ðCÞ 	 u1I	 2u2CÞ
X3
i¼1

_KiNi

 
�Ni

!
þ 2trð _EÞG2ðCÞ þ 2I3trðC	1 _EÞG3ðCÞ þ 2u1

_E

þ 2u2ðC _Eþ _ECÞ ð54Þ
Furthermore, since the solution of the tensor equation
CX	 XC ¼ _C	
X
i

_KiNi �Ni ð55Þ
is (Dui, 1999)
X ¼ D	2
	
bCðC _C	 C _CÞbC ð56Þ
substituting (55) into (56) yields
X
i

_KiNi �Ni ¼ _C	 D	2
	 ĈðC

2 _C	 2C _CCþ _CC2ÞbC ð57Þ
In view of the explicit expression in (57), the stress rate is
_T ¼ 2ðG1 	 u1I	 2u2CÞ½ _E	 D	2
	 ĈðC

2 _E	 2C _ECþ _EC2ÞĈ
 þ 2 trð _EÞðG2 þ I1G3Þ 	 2trðC _EÞG3

þ 2u1
_Eþ 2u2ðC _Eþ _ECÞ ð58Þ
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or
_T ¼ 2ðG1 	 u1I	 2u2CÞ½ _E	 D	2
	
bCðC2 _E	 2C _ECþ _EC2ÞĈ
 þ 2trð _EÞG2 þ 2I3trðC	1 _EÞG3

þ 2u1
_Eþ 2u2ðC _Eþ _ECÞ ð59Þ
It is seen that expressions (58) and (59) are more concise than (48).

Remark. If the coefficients are differentiable, to differentiate the stress (17) directly with respect to time

yields (Itskov, 2000)
_T ¼ _u0Iþ _u1Cþ _u2C
2 þ 2u1

_Eþ 2u2ðC _Eþ _ECÞ ð60Þ

But we should be aware of that the coefficients ui may not be differentiable even if T is differentiable (Ball,

1984 and Man, 1995). Hence the formula (60) must be regarded as incomplete ones.

4.2. Double coalescence

In the case that C has only two distinct eigenvalues, i.e. K1ðtÞ 6¼ K2ðtÞ ¼ K3ðtÞ ¼ K0ðtÞ the components of
_E and _T are such that
_E23 ¼ 0; _T22 ¼ _T33; _T23 ¼ 0 ð61Þ

and (Chadwick and Ogden, 1971)
_T11 ¼
X
j

ot1
oKj

_Kj; _T22 ¼
X
j

ot2
oKj

_Kj

_T12 ¼ 2
t1 	 t2

K1 	 K2

_E12

9>>=>>; ð62Þ
Remark. Gurtin and Spear (1983) and Hoger (1986) have mentioned that the early derivations of formulae

(62) is not rigorous, the rigorous proof should follow Scheidler (1991).

Comparing the components of (62), we have
_T ¼
X
j

ot2
oKj

_Kj

 
	 �u1

_K2

!
Iþ

X
j

ot
oKj

_Kj

 "
	 �u1

_K1

!
	

X
j

ot2
oKj

_Kj

 
	 �u1

_K2

!#
N1 �N1

þ 2�u1
_E ð63Þ
In this case, T has the reduced representation
_T ¼ �a1Iþ �a2Cþ �a4
_Eþ �a5ðC _Eþ _ECÞ ð64Þ
where
�a1 ¼ �a11 trð _EÞ þ �a12 trðC _EÞ
�a2 ¼ �a21 trð _EÞ þ �a22 trðC _EÞ
To compare (63) with (64), the coefficients �aab(a, b ¼ 1; 2) and �ak (k ¼ 4; 5) in (64) can be presented as
follows:
�a4 ¼ 2�u1; �a5 ¼ 0
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and
�a11 ¼
2

D
2

o1

oK1

K2
2

�
þ ot2
oK2

K2
1 	

ot2
oK1

I2 	
ot1
oK2

I2 	
1

2
ðI21 	 I2Þ�u1

�
�a12 ¼

	2

D
2

ot1
oK1

K2

�
þ ot2
oK2

K1 	
ot2
oK1

K1 	
ot1
oK2

K2 	
1

2
I1�u1

�
�a21 ¼

	2

D
2

ot1
oK1

K2

�
þ ot2
oK2

K1 	
ot2
oK1

K2 	
ot1
oK2

K1 	
1

2
I1�u1

�
�a22 ¼

1

D
2

ot1
oK1

�
þ ot2
oK2

	 ot2
oK1

	 ot1
oK2

	 3

2
�u1

�
ð65Þ
where D
2 ¼ I21 	 4I2.

Next, we give the representation for the stress rate in terms of the scalar function f .
Since K2 ¼ K3 ¼ 1

2
ðI1 	 K1Þ, we define
f;1ðK1; I1; I2Þ ¼
ot1
oK1

ðK1;K2;K3Þ 	
1

2

ot1
oK2

ðK1;K2;K3Þ
�

þ ot1
oK3

ðK1;K2;K3Þ
�

f;2ðK1; I1; I2Þ ¼
1

2

ot1
oK2

ðK1;K2;K3Þ
�

þ ot1
oK3

ðK1;K2;K3Þ
�

f;3ðK1; I1; I2Þ ¼ 0
For i ¼ 2, 3, we may use the same definition of f;jðKi; I1; I2Þ as that in the last section.

Denote
Gj ¼ f;jðK2; I1; I2ÞIþ ðf;jðK1; I1; I2Þ 	 f;jðK2; I1; I2ÞÞN1 �N1 ð66Þ
Thus (63) can be written as
_T ¼ ðG1ðCÞ 	 �u1IÞð _K2Iþ ð _K1 	 _K2ÞN1 �N1Þ þ 2trð _EÞðG2ðCÞ þ I1G3ðCÞÞ 	 2 trðC _EÞG3ðCÞ þ 2�u1
_E

ð67Þ

or
_T ¼ ðG1ðCÞ 	 �u1IÞð _K2Iþ ð _K1 	 _K2ÞN1 �N1Þ þ 2trð _EÞG2ðCÞ þ 2I3 trðC	1 _EÞG3ðCÞ þ 2�u1
_E ð68Þ
Since the solution of the tensor equation
CX	 XC ¼ _C	 _K2I	 ð _K1 	 _K2ÞN1 �N1 ð69Þ

is (Guo et al., 1992)
X ¼ ðI21 	 4I2Þ	1ðC _C	 _CCÞ ð70Þ

we have
_K2Iþ ð _K1 	 _K2ÞN1 �N1 ¼ _C	 ðI21 	 4I2Þ	1ðC2 _C	 2C _CC þ _CC2Þ ð71Þ
By the identity (71), the time rate of stress yields
_T ¼ 2ðG1ðCÞ 	 �u1IÞð _EÞ 	 ðI21 	 4I2Þ	1ðC2 _E	 2C _ECþ _EC2Þ þ 2trð _EÞðG2ðCÞ þ I1G3ðCÞÞ
	 2trðC _EÞG3ðCÞ þ 2�u1

_E ð72Þ
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or
_T ¼ 2ðG1ðCÞ 	 �u1IÞð _EÞ 	 ðI21 	 4I2Þ	1ðC2 _E	 2C _ECþ _EC2Þ þ 2 trð _EÞG2ðCÞ
þ 2I3 trðC	1 _EÞG3ðCÞ þ 2�u1

_E ð73Þ
4.3. Triple coalescence

In the case that three eigenvalues of C coalesce, we have
_T ¼ 2 bGðCÞ _E ð74Þ

where
bGðCÞ ¼ f̂ 0ðKÞI

f̂ 0ðKÞ ¼ ot1
oK1

ðK1;K2;K3Þ þ
ot1
oK2

ðK1;K2;K3Þ þ
ot1
oK3

ðK1;K2;K3Þ
����
K1¼K2;¼K3¼K
It should be noted that present derivations of the basis-free representations for the stress rate do not

involve the time rate of coefficients and principal directions of the stress tensor.
5. Examples

In the previous section, some basis-free expressions for the stress rate _T are obtained. The results are

valid in the cases that the eigenvalues of C are distinct, doubly coalescent, and triply coalescent, respec-

tively. Let us calculate some examples for illustration.

5.1. Example 1

Consider the stress tensor as
TðCÞ ¼ I1I3C
	1 ð75Þ
In view of the Cayley–Hamilton theorem, it has the representation in the form of (17)
TðCÞ ¼ I1I2I	 I21Cþ I1C
2 ð76Þ
and
u0 ¼ I1I2; u1 ¼ 	I21 ; u2 ¼ I1
By use of the spectral theorem, (76) admits
TðCÞ ¼
X
i

I1ðK2
i 	 I1Ki þ I2ÞNi �Ni ¼

X
i

I1I3K
	1
i Ni �Ni ð77Þ
Thus the response function f may be found
f ðKi; I1; I2Þ ¼ I1ðK2
i 	 I1Ki þ I2Þ ð78Þ
The related functions are
f;1ðKi; I1; I2Þ ¼ 2I1Ki 	 I21 ; f;2ðKi; I1; I2Þ ¼ K2
i 	 2I1Ki þ I2; f;3ðKi; I1; I2Þ ¼ I1
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and
G1ðCÞ ¼ 2I1C	 I21 I; G2ðCÞ ¼ C2 	 2I1C þ I2I; G3ðCÞ ¼ I1I
In terms of formula (58), the stress rate is given by
_T ¼ 2trð _EÞðC2 	 2I1Cþ ðI2 þ I21 ÞIÞ 	 2I1ðtrC _EÞI	 2I21 _Eþ 2I1ðC _Eþ _ECÞ ð79Þ
Similarly, the function �f is
�f ðKi; I1; I3Þ ¼ I1I3K
	1
i

and
�f;1ðKi; I1; I3Þ ¼ 	I1I3K
	2
i ; �f;2ðKi; I1; I3Þ ¼ I3K

	1
i ; �f;3ðKi; I1; I3Þ ¼ I1K

	1
i

G1ðCÞ ¼ 	I1I3C
	2; G2ðCÞ ¼ I3C

	1; G3ðCÞ ¼ I1C
	1
By (59), the stress rate can be given by
_T ¼ 2I3ððI1 trC	1 _Eþ tr _EÞC	1 	 I1C
	1 _EC	1Þ ð80Þ
To express (79) in the form (48), we have
a11 ¼ 2ðI21 þ I2Þ; a12 ¼ 	2I1; a21 ¼ 	4I1; a31 ¼ 2; a4 ¼ 	2I21 ; a5 ¼ 2I1
and others are 0. Since a12 6¼ a21 and a13 6¼ a31, it demonstrates that the formula (480) for the Green elastic

material is not valid for the general isotropic one.
5.2. Example 2

Consider a frequently applied strain energy of Ogden material model
w ¼
XN
p¼1

lp Kap
1

�
þ Kap

2 þ Kap
3 	 3Iap=3=ap

3

�,
ap þ hðI3Þ ð81Þ
The second Piola–Kirchhoff stress tensor is
T ¼
XN
p¼1

lp Cap	1 	 Iap=ð3	1Þ
3 I3C

	1
� �

þ h0ðI3ÞI3C	1 ð82Þ
(A) In the case that C has three distinct eigenvalues

From (82), we have
�f ðki; I1; I3Þ ¼
XN
p¼1

lp kap	1
i 	 Iap=3

3 k	1
i

� �
þ h0ðI3ÞI3k	1

i ð83Þ
By use of the representation (17), we know
Cap	1 ¼ u0pIþ u1pCþ u2pC
2

where uip can be determined by (83) and (22).
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Hence, the time rate of the stress can be obtained by (59)
_T ¼
XN
p¼1

lpf½ðap 	 1ÞCap	2 	 u1pI	 2u2pC
½ _E	 D	2
	 ĈðC

2 _E	 2C _ECþ _EC2ÞĈ
 þ 2u1p
_E

þ 2u2pðC _Eþ _ECÞ 	 2ap

3
Iap=3
3 trðC	1 _EÞC	1 þ 2Iap=3

3 C	1 _EC	1g2I3ðh0ðI3Þ þ h00ðI3ÞI3Þ trðC	1 _EÞC	1

	 2I3h0ðI3ÞC	1 _EC	1 ð84Þ
(B) In the case that C has only two distinct eigenvalues

The representation of Cap	1 may reduce to
Cap	1 ¼ �u0pIþ �u1pC ð85Þ
By (72), the time rate of the stress has the representation
_T ¼
XN
p¼1

lpf½ðap 	 1ÞCap	2 	 �u1pI
½ _E	 ðI21 	 4I2ÞðC2 _E	 2C _ECþ 2C _ECþ _EC2Þ
 þ 2�u1p
_E

	 2ap

3
Iap=3
3 trðC	1 _EÞC	1 þ 2Iap=3

3 C	1 _EC	1g 2I3ðh0ðI3Þ þ h00ðI3ÞI3Þ trðC	1 _EÞC	1

	 2I3h0ðI3ÞC	1 _EC	1 ð86Þ
(C) In the case that three eigenvalues of C coalesce

Since f̂ ðKÞ ¼ 3h0ðK3ÞK2, the stress rate yields
_T ¼ 2ð6h0ðK3ÞK þ 9h00ðK3ÞK4Þ _E ð87Þ
If we use the formula (48), the coefficients are quite complicated, even for the incompressible case (Basar

and Itskov, 1998).
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