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Abstract

In terms of the principal components of stress tensor and a scalar response function, two kinds of basis-free rep-
resentation for the stress rate are obtained, which only include the time rate of the strain, tensor functions and in-
variants of the strain tensor. The expressions for the stress rate valid in the cases that the eigenvalues of the strain are
distinct, doubly coalescent, and triply coalescent, respectively.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In continuum mechanics, tensorial physical quantities admit either principal axis representation or basis-
free representation. These two types of representation are completely equivalent. The principal axis rep-
resentation, expressing a tensor quantity in the frame of principal direction of a concerned tensor, follows
from Hill’s principal axis method (Hill, 1978, Silhavy, 1997). The basis-free representation relies on the
principal invariants and powers of arguments (Rivlin and Ericksen, 1955, Truesdell and Noll, 1965).

The principal axis representation gives better control over the differentiability, invertibility and con-
vexity, and many results in continuum mechanics can be advantageously obtained by this method, such as,
spin tensor, time rate of generalized strain and conjugate stress. However, further abstract or numerical
manipulations with the principal method are quite expensive. They require that not only the eigenvalues but
also the eigenvectors be determined.

In order to avoid calculation of the eigenvalues and corresponding eigenvectors, once a principal axis
formula is proposed, there arises naturally the problem of finding its basis-free representation. It has at-
tracted the attention of many researchers in past decades, such as, the expressions for spin tensor (see, e.g.,
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Mehrabadi and Nemat-Nasser, 1987, Wang and Duan, 1991, Macmillan, 1992, Dui, 1999), time rate of
strain (see, e.g., Wang and Duan, 1991, Man and Guo, 1993, Xiao, 1995, Xiao et al., 1998, Dui et al., 1999),
and conjugate stress (see, e.g., Hoger, 1987, Guo and Man, 1992, Xiao, 1995, Dui et al., 2000). However,
these methods are applicable for special cases. The basis-free representation of general isotropic functions is
a more difficult problem.

For finite elastic deformation, the constitutive equations can be provided by a conjugate pair of stress
and strain introduced by Hill (1968). Let E be the Green strain tensor, and let {e;} and {N;} be eigenvalues
(principal stretches) and subordinate ortho-normal eigenvectors (principal directions) of E, respectively. If
we confine our attention to isotropic materials, the constitutive equations may be described by the Green
strain and its conjugate stress T, the second Piola—Kirchhoff stress, as

T:Zti(el,ez,e3)N[®N,‘ (1)

where ¢ are the principal values of T.

Once the constitutive relation is proposed, based on the principal axes method, a more compact formula
for the stress rate was derived with the components of the strain and its rate in the principal frame {N;}
(Hill, 1968, Ogden, 1974). Evidently the component expression of the stress rate, as given in the principal
frame, is valid only in that frame.

Basis-free representation of the stress rate has an important role to play in the description of material
behavior. The time rates of conjugate stress and its corresponding strain are connected by a fourth-order
tensor, the elasticity tensor. Accordingly, if the basis-free expression for the stress rate is given, the basis-
free expression for the elasticity tensor may be obtained immediately.

Since the stress rate is an isotropic tensor function of the strain tensor and strain rate with linear in the
strain rate for the isotropic materials, it is possible in view of the representation theorem (Rivlin and Er-
icksen, 1955) for isotropic functions to find a basis-free expression for the time rate of the stress with the
strain tensor, strain rate and their invariants.

The explicit expression of the stress rate for the Green elastic material is well studied (see, e.g. Marsden
and Hughes, 1993). However, the problem of finding the basis-free expression for general isotropic
materials becomes more difficult than the above ones. As a result, most early methods are not valid again
for this problem. Thus far, a basis-free expression for the general stress rate has not been available.

One objective of this paper is to obtain explicit basis-free representations for the stress rate, which only
include the time rate of the strain, functions of the strain tensor and their invariants. The paper is organized
as follows: in Section 2, some preliminary results, which will be used in the remainder of the paper, are
supplied. In Section 3, in order to avoid the difficulty in dealing three symmetric functions, a single scalar
response function f to express the principal stress is introduced. The expressions for the stress tensor are
given by the function f in three different eigenvalue cases. In Section 4, two kinds of basis-free represen-
tations for the stress tensor are given. First, based on the principal components of the stress tensor, the
stress rate is expressed as the form of isotropic tensor function representation suggested by Rivlin and
Ericksen (1955), and 12 coefficients are determined. Then, the basis-free representations for the stress rate
are derived by the scalar function f in three different eigenvalue cases. It can be seen that this expression is
more concise than the first one. Finally, an application of our basis-free formulae for the stress rate is
illustrated by two examples in Section 5.

2. Some preliminary results

Since the deformation gradient tensor F has the positive determinant, it admits unique positive definite
second-order tensors U and V, and proper orthogonal second-order tensor R such that
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where U and V, respectively, are called the right and left stretch tensors. The right and left Cauchy—Green
strain tensors, C and B, are related to U, V and F by

C=U*=F'F, B=V?=FF' (3)

Let 4; be the principal values of U and V corresponding to the principal direction N; and n;, respectively, so
that

U=>"IN®N, V=) imon, C=> AN&®N, (4)
and

RZZ“;'@NI', F:Z)»inl'@Ni (5)
where A, = /.

Let the invariants of C be

11 :tr(C) :/11 +A2+Ag

1
b= L{H(O)) ~ (C)] = Ay + Aoy + A1y )
I; = det(C) = A1 4,45

The rate-type constitutive equation of elastic materials with linear or piecewise linear incremental
loading in the reference configuration can be described by the Green strain

E=iC-T) (7)
and its conjugate stress, the second Piola—Kirchhoff stress tensor T, as
T=L:E (8)

where the superposed dot denotes the material time rate. In Eq. (8) the fourth-order tensor is called the
elasticity tensor (or first-order modulus), and may be represented symbolically as

L= (T)e=2(T),c ©)

For isotropic elastic materials, the symmetric second Piola—Kirchhoff stress tensor T is expressible as a
function of the Green strain tensor E

T=T(E) (10)
and satisfies the identity

T(QEQ) = QT(E)Q (11)
for all orthogonal Q.

3. Representation of the second Piola—Kirchhoff stress tensor for isotropic material
First, assume that A, # A, # A3 # Ay, that is

A= (A — A3) (A3 — A1) (A — A2) # 0 (12)
If we define
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C = (12 — 4L)1 + 21,C — 3C? (13)
then it can be verified that (Dui, 1999)
A* = det(C) = 1811 + [P} — AL Ly — 413 — 2713 (14)

The conjugate pair (T, E) are coaxial, i.e., the stress T has the same principal axes N; as E,

T=) tN;aN, E=) eN®N, (15)

where t; and e; are, respectively, the principal stresses and principal strains, and
1, ., 1
== —1)==(4,—-1 16
e =5 —1) =5(4-1) (16)

The second Piola—Kirchhoff stress T, as defined in Eq. (10), is an isotropic function of C. Hence, it has
the following representation (Truesdell and Noll, 1965):

T = ¢yl + ¢,C + ¢,C’ (17)

i

where ¢, ¢, and ¢, are functions of the principal invariants of C. In view of Eq. (12), it implies
ti(Ay, Ay, A3) = @y + @ Ai + o A7 i=1,2,3 (18)

It is well known that the tensor function T is differentiable if and only ¢ are differentiable (Silhavy, 1997).
By applying the identity

A12-+Ain+A? —Il(Aj+Ai) +15L =00 #))

if 4;, I, and I, are given, another two eigenvalues A; and A, yield

1
Aj7Ak(Ai7]1)[2) - z ([] - Ai :l: \/2[1/1, - 3/112 - 412 +[12> (19)
Hence it is convenient to introduce the differentiable scalar response function f(x;,x,,x;) such that
f(AiyllaIZ) :tl(/lh/lja/lk) (20)
Similarly, by
AN+ AT = LA A+ =0 (i # )
we can define the scalar function f(yy,y»,y;) such that

f(Aia[1a13) :tl(/lh/lja/lk) (21)

In the case of 4_ # 0, Eq. (18) has a unique solution:

0o = 5 i f (AL L) AA(A — A))
o = 2 f( A1 D) (A — A7) (22)
0, = >S4, L) (A — 4))

Here and henceforth, the summation ), is to be carried out for all even permutation (i, j, k) of (1,2,3).
Certainly, the scalar coefficients ¢, ¢, and ¢, also can be expressed in terms of

J, = tr(TC")
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With the Cayley-Hamilton theorem, the following recursion formula can be established:
o —LJpr + hJyy — I3 =0 (23)
In view of (17), we have

Jo =3¢, + Lo, + (112 —2bL)p,
I

J_ :[_2€00 + 3¢, + 1o, (24)
3

I - 2L 5L
Jo= 2172% +1—901 + 3¢,
3 3

Rewriting (24) as

®o Joa
Mo | =1|/a
®r Jo
where
-2 I ;
2 L
M= L
= 3 I
2 !
3 L I} -25L
with
| 2(1} = 3L)13 (3L — L + 2131 (LI, — 93) 1
M ! = yel (3L — L+ 213) 4L L1 — 201 + I-IF — 215 — 913 3L1, — L[5 + 2171
- (LI, —9L)h 3Ll — L1} + 213 213 — 6111

then we obtain

I
= A—32 2L(17 — 3L)J 5+ 3L — ITL + 215)J 1 + (i1, — 915)J;]

|
0 =4 (L3N — TL + 2)J 5 + (4L L1, — 201 + I} — 215 — 915)J_y + (3Lls — LI + 21715)J,)]
(25)
1
02= 7 (LI — 913)J - + (3L1s — L1y + 2IT15)J 1 + (215 — 61115)Jo)
In the case that C has only two distinct eigenvalues, without loss of generality, by assuming
Ay (t) # A5(t) = A3(t) = Ap(¢) and using the relations
C =M+ (4 — LN ON, (26)

and

C? = (A; + 4,)C — A, A1 (27)
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T has the reduced representation

which implies
¢0+¢1A7:f(/115117]2) 1:172 (29)

The solution of Eq. (29) is given by
Py = Aof (Av 11, b) — M f (A, 11, 1)

O —
Ay — A4 (30)
_ [ b h) = (A4 D)
P4 A — A,
Analogous analysis for the distinct case, Eq. (23) may reduce to
Jo=3py+1ip,
I 31
J71:I—2(7)0+3<7)1 Gh
3
so that
7 £ (ILJ_y — 3Jy)
Vo =777 L1J-1 — o
L 1 oL (32)
¢ =— (LJy — 3LJ_
@1 1112_913(20 /1)
It is interesting that, by choosing T = C2, the comparison of (27) with (28) gives
L 5
MAy = ————(2I; — 6)
L — 9113 (33)
Ay + Ay = ——— (I}, — 213 — 31,1
1+ A 1112_913(12 5 113)

In the case that three eigenvalues of C coalesce, if assuming A,(7) = Ay(t) = A3(¢) = A(t) and
t1 = t, = t3 = f(A), that is, the deformation corresponds to a state of pure dilation, then C and T has the
following representation

C=4a1 (34)
and

T= /(A1 (35)
where f(A) = t,(A, A, A).

4. Basis-free expressions for the time rates of stress tensor
4.1. Case of distinct eigenvalues

If we decompose T and E in the principal axes N; and denote their components by T,] and E,-j, respec-
tively, then we have

iy
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and
T=Y ;N e\, (37)
i

respectively, where

The time rates are often advantageously obtained by the principal method (Hill, 1978). If
Ay # Ay # A3 # Ay, the components of (37) can be expressed in terms of E;; as (Ogden, 1974)

ot -

IA -f.:.
et e
v —t . ..,

ZAifjleii if i £

(38)

However, further abstract or numerical manipulations with the principal method would require not only
the eigenvalues but also the eigenvectors of the stretch tensor to be determined.

Next, we set about representing the stress rate in basis-free form. Substituting (18) and (38) into (37), and
comparing the components of E in (36), we have

3 3
. ot - . . . .
T=> —TANSON =) (¢ +20:4)AN; @ Ni +20,E + 20,(CE + EC) (39)
ij=1 J i=1
The identities
=LA+ LA —L=0 (40)
leads to
A= (342 =20 Ay + L) (A2, — Ay + ) (41)
Therefore
303 ot . 3 3 o, , s )
DD S ANENi= Y Y (A =204+ b) AT N, @ N oy
=1 j=1 7 i=1 | j=1 7
3 3 a
ti 2 —1 7
_ { [Z v (347 =20 A;+ 1)~ A;|N; ®N,}12
i=1 | j=1
3 3 @t, . . .
T+ Z aA_(3Aj —2LA;+5) " [N, @N; ol (42)
i=1 Jj=1 J
Since
1.1 = 2tI'E,
L =2LtrE - 2trCE (43)

Iy = 2L trE — 21, tr CE + 2tr C’E
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thus
> 4 - o, O X :
SN AN @N; =2 SIS 51 B4 =204, +5) 7 (b =214, + A7) [N, @ N, ¢ trE
=1 j=I J i=1 | j=1 7
: atl 1 -
-2y 51 (347 =214, + L) (I, — 4)) [N; @ N; ptr CE
i=1 j=1 J
: : atl 1 27,
+203 1Y 51 G4 =204+ L) NN b tr CF (44)
i=1 j=1 J
Denote
: o 2 -1 2
H (C)=2)" ZM(M} —2LA;+ L) (I — 2L A; + A7)
i= =1 J
— (@1 +20,4)(3A2 =20 A; + L) (I, — 21 A; + A2) IN; © N,
3 3
H,(C) Z Z =204, + 1) (I = A)) (45)

— (@) +20,4) (342 =20 A; + 1) (I, — A;) |N; @ N;

3 3
o1, _ _
C) = 22 [Z 7 (A2 =204, + 5) " — (@ + 20,4) (347 =20 A+ 1) ' [N; @ N,
Thus the time rate of T can be written as
T = H,(C) tr E + H,(C) tr(CE) + H3(C)tr(C’E) + 2¢, E + 2¢,(CE + EC) (46)

Clearly, the tensor functions H; = H;(C) are isotropic functions of C and have the representations

H;(C) = ol + o,C + 05, C? (47)
Hence the representation (46) could be written in the standard form (Rivlin and Ericksen, 1955)

T = oI + %,C + 13C* + 4K + o5(CE + EC) + o4(C’E + EC?) (48)
where

o = oy tr(E) + 0 tr(CE) + a3 tr(C°’E) (i = 1,2,3)
By (47), it can be determined that the coefficients o;;(7,j = 1,2,3) and o (k = 4, 5, 6) in (48) are as follows:
oy =2¢, os=20,, o0s=0

and
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oy = 1 Z [Z 6/11 7 — 2L 4, +12)71(12 — 2114, +A?)

— (@) +20,4)BA2 =20 A; + L) (I = 2L A; + A2) | A, A ( Ay — A;)

2 3
dzleZ[Z A+ h)” (2—211/114'/1?)
- i =1
— (@1 +2024:) 347 = 2L A; + B) ™ (I = 20 A+ A7) | (4] — A7)
3
w1 = Z[Z Aj+5) (=204, + A7)
i =1
— (@1 + 2024:) (347 =20 A; + B) ™ (I = 2L A; + A7) | (A — A))
oy = — 2 = O e o D) (1 — A
12 12 o4, I 1A+ 1 1 i
— (01 +20,4) (347 = 2L A; + L) (I — 4) | A4k (Ay = A)) (49)
= = Z lz A 3/1?_211/11-1-12)71(11 - A))
1
— (@1 + 20, 4,) 347 = 2L A; + L)' (1) — A4;) | (A} — A7)
O3 = __Z[Z @/11 /_211/11‘1‘12)71(11—/11)
— (@1 +20240)3A] = 214 + 1) (I — A) | (A; — Ay)
2 , .
%3 = o Z aA, T2 A1+ B) T = (@) + 20,40) (37 = 200 A + D) A Ak(Ay — A))
, R
Iy = —— Z 6/11 P20 A+ D) = (@ +20,4) (347 — 2L A + L) | (AT — A7)
, ) R
3= Z 6/11 P20 A+ 5) 7 = (@) 4 20,4) (347 = 20 A+ 1) (4 — Ax)

In particular, for the Green elastic material, due to the property «; = «;; the expression (48) reduces to
T = omltrE + O(]z(ltrCE + CtrE) + O(]3(ltI‘C2E + CZtI‘E) + oczthrCE + 0623(CtI'C2E + CztrCE)
+ 033C*tr C*EoyE + o5(CE + EC) + 04(C°E + EC?) (48")
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On the other hand, the representation for the stress rate can be written in the different forms in terms of

the scalar function f.
Denote

G = Zﬁ/(/liallJz)Ni ® N, G; = Zj:j(/li;[1713>Ni @ N;

(50)

where f; = &£ (x1,x,,x;) and f; = % (71,2, 3). Obviously, the tensor functions G; = G;(C) and G; = G;(C)

are isotropic functions of C.
Thus, we have

3.0
ij=1 @/1]»

AN ®@N; = G1(C) Y A; N; @ N; + tr(C)(Gy(C) + 1,G5(C)) — tr(CC)G3(C)

or

’;

-~ Ot - — . e e
aAjA,—N,@N,- =Gi(C) Y AN;®N, + tr(C)G,(C) + L tr(C ' C)G3(C)

ij=1 i

To substitute (51) and (52) into (39), the time rate of T can be written as

T = (G,(C) — ¢,1 — 2¢,C) ( 3 AN; ® N,.> + 2tr(E)(G1(C) + I,G3(C)) — 2tr(CE)G;(C)

+2¢,E + 2¢,(CE 4 EC)

or

3
T = (G,(C) — ¢,1 — 2¢,C) ( AN ® N,-) + 2tr(E)G,(C) 4 2L5tr(C'E)G5(C) + 2¢,E
=1

+2¢,(CE + EC)

Furthermore, since the solution of the tensor equation
CX-XC=C-) AN ®N,
is (Dui, 1999)
X = 472C(CC - CC)C
substituting (55) into (56) yields
YT AN;@N; =C - 422C(C°C - 2CCC + CC°)C
In view of the explicit expression in (57), the stress rate is

T =2(G, — ¢,1 — 2¢,C)[E — 472 C(C*E — 2CEC + EC*)C] + 2 tr(E)(G, + I;G3) — 2tr(CE)Gs;
+2¢,E 4 2¢,(CE + EC)

(51)
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or

T =2(G; — 9,1 — 2¢,C)[E — 47>C(C°E — 2CEC + EC*)C] + 2tr(E)G, + 2I5tr(C'E)G;
+2¢,E + 2¢,(CE + EC) (59)

It is seen that expressions (58) and (59) are more concise than (48).

Remark. If the coefficients are differentiable, to differentiate the stress (17) directly with respect to time
yields (Itskov, 2000)

T = ¢oI + ¢,C + ¢,C* + 2¢,E + 2¢,(CE + EC) (60)
But we should be aware of that the coefficients ¢, may not be differentiable even if T is differentiable (Ball,
1984 and Man, 1995). Hence the formula (60) must be regarded as incomplete ones.
4.2. Double coalescence
~ In the case that C has only two distinct eigenvalues, i.e. A, (t) # A,(t) = A3(¢) = Ao(t) the components of
E and T are such that

E23 = 07 T22 = T33, 7.—‘23 =0 (61)
and (Chadwick and Ogden, 1971)

. ot - . oty -
Ty = 671/1]’ I = 672/1]
Py r (62)
T,=2-—"1"2F
12 e

Remark. Gurtin and Spear (1983) and Hoger (1986) have mentioned that the early derivations of formulae
(62) is not rigorous, the rigorous proof should follow Scheidler (1991).

Comparing the components of (62), we have

- on . or . . ot . .
J J J J J J

+2¢,E (63)

In this case, T has the reduced representation

N; ® N

T = a1 + %,C + K + a5(CE + EC) (64)

where
o] = o1 tI’(E) + o tI’(CE)
Oy = 0y tr(E) + 0 tI'(CE)

To compare (63) with (64), the coefficients a,s(x, f = 1,2) and a; (k =4,5) in (64) can be presented as
follows:

% =2p,, a5=0
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and
_ 2 2 atz Ot - ot - 1 5 _
== - 2L -—tL (-1
= <6A1 A o 2T e
o2, atz PR T o
12*22 6/11 Ay oA, 1 oA, 2 21901 )
o 2220, % PR T
A Zz 6/11 1 a/l] 2 6/12 ! 2 191
Sy — 1 ot n atz afz oh 3
2= 2\ o4, Toa, o4, o4, 27
where 4" = 112 — 4.
Next, we give the representation for the stress rate in terms of the scalar function f.
Since A, = A3 =1 (I, — A;), we define
ot 1[ ot ot
fi(AnLLL L) = 8/11 (A, Az, A3 )—5 [6 1 (A, Az, A3 )+6/11 (A1, A3, 43)
ot ot
fo(A1 1, b) = a/f (A1, 42, 43) + 7 (AI,AZ,Az)}
f3(A, 1, 5L) =0
For i =2, 3, we may use the same definition of f,;(4;,1;,>) as that in the last section.
Denote
G; = f(Ao, 11, L)Y+ (f (A, L, b) = f5(A2, L, 1))Ny @ Ny (66)

Thus (63) can be written as

T = (Gi(C) — ¢, 1)(Al + (4 — 42)N; @ Ny) + 2tr(E) (G5 (C) + 11G3(C)) — 2tr(CE)G3(C) + 29, E

(67)
or

T = (Gi(C) — 1) (M + (A — A)N; @ N}) + 2tr(E)G,(C) + 2L tr(C'E)G3(C) + 2, E (68)
Since the solution of the tensor equation

CX —XC = C— A0 — (4] — 4)N; @ N, (69)
is (Guo et al., 1992)

X = (1> — 4L) "' (CC - CC) (70)
we have

A0+ (A — )N, @ N, = C — (I — 4L) ™ (C*C — 2CCC + CC?) (71)

By the identity (71), the time rate of stress yields

=2(G,(C) — @,1)(E) — (1> — 41) ' (C’E — 2CEC + EC?) + 2tr(E)(G1(C) + I,G;(C))
— 2tr(CE)G;3(C) + 2¢,E (72)
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or
T= 2(Gi(C) -
+2Ltr(C

. 1)(E) — (I> — 4L,) ' (C°E — 2CEC + EC?) + 2tr(E)G,(C)
"E)G5(C) +2¢,E (73)

4.3. Triple coalescence

In the case that three eigenvalues of C coalesce, we have

T=2G(C)E (74)
where
G(C) = (A1
- oy ot ot
A)= —(A;,4,, 1 — (A1, 45, 4 — (A, 4,5, 4
f'(4) 6/11< 1, A, 3)+6/12( 1, Ao, 3)+6A3( 1, Az, A3) st

It should be noted that present derivations of the basis-free representations for the stress rate do not
involve the time rate of coefficients and principal directions of the stress tensor.
5. Examples

In the previous section, some basis-free expressions for the stress rate T are obtained. The results are
valid in the cases that the eigenvalues of C are distinct, doubly coalescent, and triply coalescent, respec-
tively. Let us calculate some examples for illustration.

5.1. Example 1

Consider the stress tensor as

T(C) = ,I;C™! (75)
In view of the Cayley—Hamilton theorem, it has the representation in the form of (17)
T(C) = L, LI — I*’C 4 I, C? (76)

and
po="hLbL, ¢ = *[12: ¢, =1
By use of the spectral theorem, (76) admits
T(C) = S I(L — A+ LN &N =S IEA'N, @ N, (77)

Thus the response function /' may be found
f(Au L L) = L(A] = LA + 1) (78)

The related functions are

f1(An L L) =204, = IF, fo(An i, b)) = A7 =20 A+ L, f3(A, 1L L) =1
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and
G (C)=2C -1, Gy(C)=C*-2I,C+LI, G;3(C)=/N1
In terms of formula (58), the stress rate is given by
T = 2tr(E)(C* — 21,C + (I, + I})I) — 21, (tr CE)I — 2I7E + 21, (CE + EC) (79)
Similarly, the function f is
f(AL L) = LA
and

f1(Au 1L B) = —LA?

1 )

fo(An I, ) = LA, f3(And,I) = LA

G,(C)=-IC?* G,(C)=LC"' G;C)=r5C"
By (59), the stress rate can be given by
T =25((Ltr C'E+trE)C' —,C'EC™) (80)
To express (79) in the form (48), we have
oy =21 + L), o =-2L, oy=-4, oy=2, oyg=-2I, oas=2]

and others are 0. Since o, # oy and o3 # a3;, it demonstrates that the formula (48") for the Green elastic
material is not valid for the general isotropic one.

5.2. Example 2

Consider a frequently applied strain energy of Ogden material model
a 3
w = ZHP(AT,;_‘_A;;J_,'_Agp_g,[;l’/*/“!’)/ap_yh(h) (81)
p=1
The second Piola—Kirchhoff stress tensor is
T Z’up <Coz,,7l ocp/ (3-1) [ C ) + h/(13)I3C71 (82)

(A) In the case that C has three distinct eigenvalues
From (82), we have

70, 1) Zﬂp( L) ) (83)

By use of the representation (17), we know
Cxpil = (pOpI + (plpC + (plpcz

where ¢;, can be determined by (83) and (22).
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Hence, the time rate of the stress can be obtained by (59)

T= Zup —1)C"? — ¢, ] — 2¢,,C][E — 47°C(C’E — 2CEC + EC*)C] + 29, E

+2¢,,(CE+EC) — 31’1%/3 r(C'E)C! 4 217 CTYECT V2L (W (1) + 1! (I;)1;) tr(C'E)C™!
— 2K (I;)C'EC™! (84)

(B) In the case that C has only two distinct eigenvalues
The representation of C*~' may reduce to

' =yl + ,,C (85)

By (72), the time rate of the stress has the representation

T= Z w,{[(2, — 1)C** — @ J|[E — (I} — 4L)(C’E — 2CEC + 2CEC + EC?)] + 26, E

Pip

2 o, S - Up/3 v~ 1~ / " -1y —
—%13”/3tr(C 'B)C! 4 207 CTUECTY 2L (K () + 1 (1)) tr(CT'E) C !

— 21K (I)C'EC™! (86)

(C) In the case that three eigenvalues of C coalesce
Since f(A) = 3k'(A%) A%, the stress rate yields

T = 2(6K (A*) A + 91" (A*) A*)E (87)

If we use the formula (48), the coefficients are quite complicated, even for the incompressible case (Basar
and Itskov, 1998).
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